Land Use Impacts of Ecosystem Services in LCA Tim Grant Director, Lifecycles

Background

- Global pressures on land use
 - Expanding population and increasing demand for meat
 - Increase demand for biofuels, biomaterials and carbon storage.
- ES damages will either
 - Take economic resources of government which will compete with better uses
 - Not be address and results in ecosystem quality and human health damage

Where are ecosystem service inputs

- Biobased products often compared with synthetic non-biobased
 - Biobased will usually have impacts of ecosystem service

- Provide some basis for net positive movement, regenerative agriculture
 - Actually measuring if productive compacity is increasing.

Model selection

After initial review of methods and results from Vidal et.al (2017), five impact categories have been selected.

- Soil organic carbon(SOC)
- Erosion Reduction (ERP)
- Groundwater Regeneration (GR)
- Mechanical filtration (MF)
- Physicochemical Filtration (PCF)

Pathways for 5 methods

Soil Organic Carbon

IPCC, 2019. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories, in: Buendia, E.C., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S. (Eds.), . IPCC, Switzerland.

IPCC. 2006. "2006 IPCC Guidelines for National Greenhouse Gas Inventories." In.: The Intergovernmental Panel on Climate Change.

Brandão, Miguel, and Llorenç Milà i Canals. 2013. 'Global characterisation factors to assess land use impacts on biotic production', *The International Journal of Life Cycle Assessment*, 18: 1243-52.

De Laurentiis V, Maier S, Horn R, Uusitalo V, Hiederer R, Bessou C, Morais T, Grant T, Milà i Canals L, Sala S. Soil organic carbon as an indicator of land use impacts in life cycle assessment. Submitted for publication

Erosion

Bos, U., Horn, R., Beck, T., Lindner, J. P., & Fischer, M. (2016). LANCA-Characterization Factors for Life Cycle Impact Assessment. Fraunhofer Verlag.

Bos, Ulrike; Maier, Stephanie D.; Horn, Rafael; Leistner, Philip; Finkbeiner, Matthias (2020): A GIS based method to calculate regionalized land use characterization factors for life cycle impact assessment using LANCA®. In Int J Life Cycle Assess 25 (7), pp. 1259-1277. DOI: 10.1007/s11367-020-01730-y.

Borrelli, P., Robinson, D.A., Fleischer, L.R. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8, 2013 (2017). https://doi.org/10.1038/s41467-017-02142-7

Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use sce-narios for the period 1500-2100: 600 years of global gridded annual land-use transi-tions, wood harvest, and resulting secondary lands. Climatic Change 2011, 109, 117-161, doi:10.1007/s10584-011-0153-2.

Groundwater Regeneration

Bos, U., Horn, R., Beck, T., Lindner, J. P., & Fischer, M. (2016). LANCA-Characterization Factors for Life Cycle Impact Assessment. Fraunhofer Verlag.

Bos, Ulrike; Maier, Stephanie D.; Horn, Rafael; Leistner, Philip; Finkbeiner, Matthias (2020): A GIS based method to calculate regionalized land use characterization factors for life cycle impact assessment using LANCA®. In Int J Life Cycle Assess 25 (7), pp. 1259-1277. DOI: 10.1007/s11367-020-01730-y.

Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use sce-narios for the period 1500-2100: 600 years of global gridded annual land-use transi-tions, wood harvest, and resulting secondary lands. Climatic Change 2011, 109, 117-161, doi:10.1007/s10584-011-0153-2.

Mechanical Filtration

Bos, U., Horn, R., Beck, T., Lindner, J. P., & Fischer, M. (2016). LANCA-Characterization Factors for Life Cycle Impact Assessment. Fraunhofer Verlag.

Bos, Ulrike; Maier, Stephanie D.; Horn, Rafael; Leistner, Philip; Finkbeiner, Matthias (2020): A GIS based method to calculate regionalized land use characterization factors for life cycle impact assessment using LANCA®. In Int J Life Cycle Assess 25 (7), pp. 1259-1277. DOI: 10.1007/s11367-020-01730-y.

Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use sce-narios for the period 1500-2100: 600 years of global gridded annual land-use transi-tions, wood harvest, and resulting secondary lands. Climatic Change 2011, 109, 117-161, doi:10.1007/s10584-011-0153-2.

General Formula for endpoint calculation

$$AoP(\$) = CFs \times ECF \times XF$$

Where:

CFs = Midpoint Characterisation factor

ECF = economic conversion factors

XF = allocation to final ecosystem service

From Cao, Viêt, Manuele Margni, Basil D Favis, and Louise Deschênes. 2015. 'Aggregated indicator to assess land use impacts in life cycle assessment (LCA) based on the economic value of ecosystem services', *Journal of Cleaner Production*, 94: 56-66. Boulay, Anne-Marie, Cécile Bulle, Jean-Baptiste Bayart, Louise Deschênes, and Manuele Margni. 2011. 'Regional Characterization of Freshwater Use in LCA: Modeling Direct Impacts on Human Health', *Environmental Science & Technology*, 45: 8948-57.

Example of effect factor

SOC Effect Factor

SOC endpoint calculation

Proposed by Cao et al Updated to values to 2020 data.

$$\frac{Total\ annual\ revenue\ from\ crops\ per\ country}{Total\ soil\ organic\ carbon\ of\ arable\ land} = \$\ per\ tC\ per\ Year$$

XF is 100% from final ecosystem service as is measuring agricultural production

SOC deficit midpoint and effect factor

Distribution of SOC Effect Factors 0.9 0.7 \$ per kg of SOC 0.4 0.3 0.2 0.1

Mid-point characterisation factor

Effect factor

Results for global normalisation

	pasture/meadow	arable	urban	forest		unspecified	l To	tal
SOC Occ.	386,381	381,400	209,531		-			977,311
ER Occ.	581	7,685	1,113					9,379
GR Occ.	111,731	88,836	24,356					224,922
МҒ Осс.	1,932	24,974	1,054					27,959
SOC Trans.	- 95	966	1,937		-		501	3,309
ER Trans.	- 3	- 9	8	-	0	-	13 -	16
GR Trans.	385	- 146	269	-	22	-	191	296
MF Trans.	6	- 6	12	-	8		1	5
Total	500,918	503,701	238,279	-	30		298	1,242,897

Total ES impacts from land use per country – total

ES impacts from land use per country - area normalised

Case study on Rice Production and in three regions

Conclusions

• Ecosystem service damage from land use included in model account for approximately 1/3 of total annual value of global food production.

Additional work required to expand to look at other land use effects

