

Carbon Footprint Evaluation of Various Hydrogen Production Technologies

Mutah Musa, Tara Hosseini, Tim Lai, Nawshad Haque*, Sarb Giddey

CSIRO Energy, Clayton, Victoria

*Nawshad.Haque@csiro.au

- CSIRO's Techno-economics for decarbonisation team, has a know-how and long history of process design and development of techno-economic and LCA models:
 - Hydrogen production technologies
 - Chemical production
 - Low-emission energy production technologies
 - integration of clean energies with high-temperature processes

This team has experienced resources and capabilities and has access to different commercial software for process simulation, Techno-economic assessment and life cycle assessment.

Hydrogen supply chain –Conventional technologies

Bydrogen supply chain –Emerging technologies

Scenarios for LCA

Feedstock	Process	Source of electricity	Carbon Capture	Hydrogen production (kt/a)
Natural Gas	SMR	National Grid	Y	100
Natural Gas	SMR	National Grid	Ν	100
Natural Gas	ATR	National Grid	Y	100
Natural Gas	ATR	National Grid	Ν	100
Black Coal	Gasification	National Grid	Y	100
Black Coal	Gasification	National Grid	Ν	100
Brown Coal	Gasification	National Grid	Y	100
Brown Coal	Gasification	National Grid	Ν	100
Biomass	Pyrolysis	National Grid	Y-Partial	25
Biomass	Pyrolysis	National Grid	Y	25
Biomass	Gasification	National Grid	Y-Partial	25
Water	AWE	National Grid	NA	25
Water	PEM	National Grid	NA	25
Water	AWE	Solar PV	NA	25
Water	PEM	Solar PV	NA	25
Water	AWE	Wind	NA	25
Water	PEM	Wind	NA	25

SMR: Steam methane reforming ATR: Autothermal reformer AWE: Alkaline electrolyser PEM: Proton-Exchange membrane Electrolyser

- Hydrogen can be produced from low- or high-carbon pathways.
- There is a need to define "green" hydrogen standards to certify lowcarbon hydrogen for consumers
- The cleanness of hydrogen production technologies are now being colour labelled to give another perspective on the production routes

Carbon footprint analysis approach

- For all of the processes, the energy required for the process (including steam or high-temperature heat) was provided on-site.
- The CO₂ emission from the process, includes the CO₂ emission from the process itself, together with the CO₂ emitted from provision of energy to the process.
- The electricity required for the plant, includes electricity required for ASU (if needed) and auxiliary equipment and is provided from grid.
- The electricity required for the electrolysers with renewable energy is provided from respective renewable energy plant.

Natural Gas SMR

Biomass Pyrolysis

Water electrolysis routes

Alkaline water electrolysis

Comparison of carbon footprint

 The CO₂ emission for the renewable energy connected electrolysers are from SimaPro software - AusLCA

10

- Grid connected electrolyser is the largest CO₂ emitters
- Black coal gasification releases more CO₂ in comparison to other fossil fuel routes
- The biomass routes, • release large amount Of CO_2 but could be considered biogenic CO₂ The renewable energy electrolysers connected the cleanest are CO_2 technology with emission in the range of 42-58 g/kg H_2

Emissions from grid-connected electrolysers

- Tasmania has the lowest emission
- An electrolyser connected to grid in Victoria emits 50-55 kgCO_{2e}/kg H₂

SWIS: South West Interconnected System NWIS: North Western Interconnected System

Australian National Greenhouse Accounts Factors (dcceew.gov.au)

DKIS: Darwin Katherine Interconnected System

- With considering the emission intensity of national grid, grid-connected electrolysers have the highest CO₂ emissions
- States with highest renewable energy penetration rates (like Tasmania and SA) are the best locations for grid-connected electrolysers
- Black coal to hydrogen emits ~27 kgCO_{2e}/kg H₂ is the highest CO₂ emitter after the gridconnected electrolysers
- Biomass gasification and pyrolysis emits more CO₂ than natural gas cases but the CO₂ emitted from this process is a biogenic CO₂, so this technology is amongst the lowest CO₂ emitters.
- Natural gas SMR and ATR pathway emits similar CO₂ (~11.6 kgCO_{2e}/kg H₂)
- The renewable energy connected electrolysers are the cleanest technology.

- Including other pathways for hydrogen production to the analysis (such as white hydrogen and pink hydrogen)
- Including more detailed analysis of CO₂ emissions related to the scope 3 emissions (e.g. coal and natural gas transport, CO₂ transport etc)
- Extending the carbon footprint analysis to a full impact category assessments

- Future Fuels CRC
- Research collaborator team from University of Adelaide and the University of Queensland
- Industrial advisors

Thank you

CSIRO Energy – Clayton

Dr Tara Hosseini

Senior Research Scientist

E: Tara.Hosseini@csiro.au

LinkedIn Profile

Australia's National Science Agency