

Ranking the environmental benefits and impacts of different biorefining options for food waste – a case study of citrus waste

Roanna Jones

Centre for Agriculture and the Bioeconomy (QUT)

Fight Food Waste CRC

1. Project Overview

Opportunities for managing horticultural food waste using biorefining approaches.

Why is food waste a problem?

Significant economic, social and environmental impacts.

For example:

- 1/3 of food is wasted but more than 820 million people are food insecure. (1)
- Food is resource intensive and carries a lot of imbedded impacts.
- Costs almost \$940 billion annually! (2)

Roanna Jones

⁽¹⁾ FAO. (2019). *The state of food and agriculture 2019*. http://www.fao.org/3/ca6030en/ca6030en.pdf

⁽²⁾ FAO. (2011). Global food losses and food waste: extent, causes and prevention. <u>http://www.fao.org/3/a-i2697e.pdf</u>

The biorefining opportunity...

Transformation of renewable organic feedstocks to produce valuable products.

- Energy products (heat, electricity, fuel) [energy-driven biorefining]
- Other products (chemicals, protein, enzymes, materials etc.) [product-driven biorefining]
- Opportunity for
 - Value creation
 - Mitigate environmental impacts.

However, many biorefining processes are novel and their environmental impacts are unknown.

Biorefining in the waste hierarchy

Waste hierarchy, taken from the National food waste baseline: final assessment report.

• ARCADIS. (2019). National food waste baseline: final assessment report. <u>https://www.environment.gov.au/system/files/pages/25e36a8c-3a9c-487c-a9cb-66ec15ba61d0/files/national-food-waste-baseline-final-assessment.pdf</u>

2. Citrus processing waste case study

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J

To compare the relative environmental attributes and ranking of biorefining processes, compared to traditional FLW management options

- Landfilling (disposal/ no recovery)
- Composting
- Feeding to livestock
- Incineration with energy recovery
- Anaerobic digestion
- Solvent extraction of pectin
- Solvent free microwave extraction of essential oil
- Fermentation to produce lactic acid

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J

LCA Key information:

- Consequential LCA
- Partial LCA
- Gate-to-gate system
- Expanded system boundary considered product displacement effects
- Functional unit = 1 tonne of citrus waste
- Initially considered 13 environmental impact categories.

Estimating total impact (to compare the scenarios)

- 1. Normalised against the annual impacts of a global citizen.
- 2. Selected significant impact categories.
 - Global warming potential, resource depletion of fossil fuels and elements, eutrophication, acidification.
- 3. Applied weighting (1)
- 4. Aggregated

(1) Sala, S., Cerutti, A. K., & Pant, R. (2018). Development of a weighting approach for the Environmental Footprint. European Commission. https://eplca.jrc.ec.europa.eu/permalink/2018_JRC_Weighting_EF.pdf

3. Results

Aggregated Environmental Impact of each Scenario per tonne of CPW

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J

Traditional Management

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J

QUT

Biorefining <u>energy</u> products

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J

QUT

Biorefining non-energy products

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J

4. Key takeaways

- 1. Many biorefining processes are **novel** (particularly product-driven biorefining).
 - There is opportunity for optimisation (e.g. process improvements, improved yield, cascading systems, better utilisation of food waste feedstocks etc.).
- 2. Large product displacement effects for non-energy products.
- 3. When considering product-driven biorefining, there are multiple factors that affect the environmental outcome, that aren't captured in a waste hierarchy.

Acknowledgements

My Supervisory Team:

- Professor Ian O'Hara
- Dr Marguerite Renouf
- Dr Robert Speight
- Dr Jo-Anne Blinco

This research is supported by an Australian Government Research Training Program (RTP) Scholarship.

The work has been supported by the Fight Food Waste Cooperative Research Centre whose activities are funded by the Australian Government's Cooperative Research Centre Program.

Additional slides

Displaced products

Scenario name		Products	Displaced products (DP)		
			DP1	DP2	DP3
	Landfilling	None	-		
Ш	Composting	Compost	Urea	Ammonium nitrate	-
III	Feeding to livestock	CPW animal feed	Soybean meal	Corn gluten meal	-
IV	Incineration with energy recovery	Electricity	Average grid mix	Coal-generated electricity	Solar-generated electricity
		Hot water	Liquid natural gas (LNG)		
V	Anaerobic digestion	Digestate	Urea	Ammonium nitrate	-
		Biogas	Liquid natural gas (LNG)		
VI	Solvent extraction of pectin	Pectin	Modified starch	Gelatine	-
		Hydrosol	Water		
VII	SFME of essential oil	Citrus Oil	Flavours for food and beverage		
		Hydrosol	Water		
		CPW animal feed (after SFME)	Soybean meal	Corn gluten meal	-
VIII	Fermentation to produce lactic acid	Lactic Acid	Lactic acid from traditional production		
		Microbial biomass animal feed	Soybean meal	Corn gluten meal	-

Normalisation and key impact categories

Annual environmental impacts of processing 10,000 tonnes of CPW.

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J

Roanna Jones

QUT

Profile of Impacts

	Landfilling	Composting	Feeding to livestock	Incineration with energy recovery
Processing Impacts	a) Materials Energy Fugitive emissions Impacts of Disposal Infrastructure Impacts	b)	Impact: 0%	e)
Product Displacement Effects	Displacement: 0%	c) Displacement: 0.6%	d) Soybean meal Displacement: 0.7%	f) Displacement: 0.3%
	Anaerobic digestion	naerobic digestion Solvent extraction of pectin		Fermentation to produce lactic acid
Processing Impacts	g)	i) Impact: 17.5%	k) Impact: 6.4%	m) Impact: 4.5%
Product Displacement Effects	h) Urea = LNG Displacement: 0.8%	j) Modified starch = Water Displacement: 1.2%	l) Flavours Water Displacement: 0.8%	n) Soybean meal = Lactic acid Displacement: 3.2%

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J