Life Cycle Assessment of Prefabrication Construction: A Review

Candidate Name Degree

Name of Supervisors : Dr. Ziyad Abunada

- : Ngoc Thang Tran
 - Research Master Degree

Dr. Ziyad Abunada Dr. Farzaneh Tahmoorian

BE WHAT YOU WANT TO BE cqu.edu.au

CRICOS Provider Code: 00219C | RTO Code: 4093

Outline

- 1. Introduction
- 2. Research Methodology
- 3. Finding and Discussion
- 4. Conclusion
- 5. Questions and Answer

The construction industry is responsible for:

- Around 40% of the energy consumed,
- 39% of the global CO2 emissions, and
- 35% of landfill wastes.
- consumes about 50% of the global materials and water resources

(Kamali et al., 2019)

Prefabrication construction:

- Save construction time 30~50%
- Higher quality
- Higher safety
- Lower labour intensive
- Better environment performance

Adoption rate:

- 2-3% for resident buildings in US,
- 9% in Germany,
- 2% in United Kingdom,
- 12-16% in Japanese, and

BEWHAT YOU WANT TORBE

cqu.edu.au

• 3-5% in Australia

Aim

Sustainability of Prefabrication Construction compared to traditional construction method

Questions:

- 1. What are the benefits of prefabrication construction method?
- 2. How sustainable the prefabricated construction method compared with the traditional method?

BEWHAT YOU WANT TO'BE

Research Methodology

DATA COLLECTION:

- Scopus & Web of Science
- 5 Keyword Groups:

Keywords	Keywords	Keywords	Keywords	Keywords
Group 1	Group 2	Group 3	Group 4	Group 5
Modular construction	Conventional construction	Life cycle assessment	Vietnam	Comparative
Prefabrication construction	Traditional Construction	Life cycle cost		Comparison
Prefabricated construction	Onsite construction			
Offsite Prefabrication	Onsite prefabrication			
Offsite construction	Onsite concrete			
Prefabricated concrete	Onsite Casting			
Offsite concrete				

BEWHAT YOU WANT TOPBE

Research Methodology

BEWHAT YOU WANT TOBE

1. Prefabrication Construction

- Innovative construction method
- Offers a wide range of benefits, including
 - time-saving,
 - higher quality and safety, and
 - lower labour intensive

But:

- Low adoption rate
- Potential growth

2. LCA & LCA Framework

3. Environment Sustainability

- Many studies used LCA to investigate environment sustainability
- Most studies are focused on energy performance, carbon emissions and greenhouse gas emissions
- Only a few studies:
 - Explore full environmental indicators,
 - or cover the life cycle stages of prefabrication buildings

BEWHAT YOU WANT 10/BE

4. Economic Sustainability

- a key factor of sustainability (Kamali et al., 2022)
- One of the few barriers that promote the potential growth of off-site prefabricated buildings (Ferdous et al. 2019)
- Varies from studies to studies
- Varies among coutries (Tavares and Freire, 2022)

BEWHAT YOU WANT TO BE

5. Social Sustainability

- Social aspect has been neglected so far (Balasbaneh and Sher, 2021)
- No considerable studies on these buildings' economic and social sustainabilities (Kamali and Hewage, 2017)

- More research is needed on prefabrication construction to support the wide dissemination of this construction technique
- Address three dimensions of sustainability pillars to have a holistic view of prefabrication construction technique
- Economic dimension should be evaluated comprehensively to encompass the critical barrier and promote this construction technique

REFERENCE

- Balasbaneh, A. T. & Sher, W. 2021. Life cycle sustainability assessment analysis of different concrete construction techniques for residential building in Malaysia. *The International Journal of Life Cycle Assessment*, 26, 1301-1318.
- Ferdous, W., Bai, Y., Ngo, T. D., Manalo, A. & Mendis, P. 2019. New advancements, challenges and opportunities of multi-storey modular buildings A state-of-the-art review. *Engineering Structures*, 183, 883-893.
- Kamali, M. & Hewage, K. 2017. Development of performance criteria for sustainability evaluation of modular versus conventional construction methods. *Journal of Cleaner Production*, 142, 3592-3606.
- Kamali, M., Hewage, K. & Sadiq, R. 2019. Conventional versus modular construction methods: A comparative cradle-to-gate LCA for residential buildings. *Energy and Buildings*, 204.
- Kamali, M., Hewage, K. & Sadiq, R. 2022. Economic sustainability benchmarking of modular homes: A life cycle thinking approach. *Journal of Cleaner Production*, 348.
- Tavares, V. & Freire, F. 2022. Life cycle assessment of a prefabricated house for seven locations in different climates. *Journal of Building Engineering*, 53.

BEWHAT YOU WANT 10/BE

